A Note on Linear Time Algorithms for Maximum Error Histograms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculating Linear Time Algorithms for Solving Maximum Weightsum Problems

In this paper, we propose a new method to derive practical linear time algorithms for maximum weightsum problems. A maximum weightsum problem is speci ed as follows: given a recursive data x, nd an optimal subset of elements of x which not only satis es certain property p but also maximizes the sum of the weight of elements of the subset. The key point of our approach is to describe the propert...

متن کامل

A short note on exponential-time algorithms for hybridization number

In this short note we prove that, given two (not necessarily binary) rooted phylogenetic trees T1, T2 on the same set of taxa X, where |X| = n, the hybridization number of T1 and T2 can be computed in time O∗(2n) i.e. O(2 · poly(n)). The result also means that a Maximum Acyclic Agreement Forest (MAAF) can be computed within the same time bound.

متن کامل

Approximation Algorithms for Maximum Linear Arrangement

The generalized maximum linear arrangement problem is to compute for a given vector x 2 IR n and an n n non-negative symmetric matrix W = (w i;j), a permutation of f1; :::; ng that maximizes P i;j w i ;; j jx j ? x i j. We present a fast 1 3-approximation algorithm for the problem. We present a randomized approximation algorithm with a better performance guarantee for the special case where x i...

متن کامل

On the Approximation of Pseudo Linear Systems by Linear Time Varying Systems (RESEARCH NOTE)

This paper presents a modified method for approximating nonlinear systems by a sequence of linear time varying systems. The convergence proof is outlined and the potential of this methodology is discussed. Simulation results are used to show the effectiveness of the proposed method.

متن کامل

A Note on the Bivariate Maximum Entropy Modeling

Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1  and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2007

ISSN: 1041-4347

DOI: 10.1109/tkde.2007.1039